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Abstract
Efficient implementations of software masked designs constitute both an important goal and a significant challenge to Side
Channel Analysis attack (SCA) security. In this paper we discuss the shortfall between generic C implementations and
optimized (inline-) assembly versions while providing a large spectrum of efficient and generic masked implementations for
any order, and demonstrate cryptographic algorithms and masking gadgets with reference to the state of the art. Our main
goal is to show the prime performance gaps we can expect between different implementations and suggest how to harness the
underlying hardware efficiently, a daunting task for various masking-orders or masking algorithm (multiplications, refreshing
etc.). This paper focuses on implementations targeting wide vector bitsliced designs, such as the ISAP algorithm. We explore
concrete instances of implementations utilizing processors enabled by wide-vector capability extensions of the AMD64
Instruction Set Architecture (ISA); namely, the SSE2/3/4.1, AVX-2 and AVX-512 Streaming Single Instruction Multiple
Data extensions. These extensions mainly enable efficient memory level parallelism and provide a gradual reduction in
computation-time as a function of the level of extension and the hardware support for instruction-level parallelism. For the
first time we provide a complete open-source repository of such gadgets tailored for these extensions, various gadgets types
and for all orders. We evaluate the disparities between generic high-level language masking implementations for optimized
(inline-) assembly and conventional single execution path data-path architectures such as theARMarchitecture.Weunderscore
the crucial trade-off between state storage in the data-memory as compared to keeping it in the register-file (RF). This relates
specifically to masked designs, and is particularly difficult to resolve because it requires inline-assembly manipulations and
is not natively supported by compilers. Moreover, as the masking order (d) increases and the state gets larger, there must
be an increase in data memory read/write accesses for state handling since the RF is simply not large enough. This requires
careful optimization which depends to a considerable extent on the underlying algorithm to implement. We discuss how full
utilization of SSE extensions is not always possible; i.e. when d is not a power of two, and pin-point the optimal d values
and very sub-optimal values of d which aggressively under-utilize the hardware. More generally, this paper presents several
different fully generic masked implementations for any order or multiple highly optimized (inline-) assembly instances which
are quite generic (for a wide spectrum of ISAs and extensions), and provide very specific implementations targeting specific
extensions. The goal is to promote open-source availability, research, improvement and implementations relating to SCA
security and masked designs. The building blocks and methodologies provided here are portable and can be easily adapted to
other algorithms.
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Introduction

Side-channel protection by masking countermeasures has
quadratic cost factors associated with the desired security
levelwhich are dominated by vector-multiplications [5, 9, 10,
13, 15, 24]. Masking implementations are also quite expen-
sive and complicated due to randomness handling (refreshes)
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and volume (generation) [5, 25]. However, all inherent mask-
ing assumptions theoretically provide exponential security at
“only” a polynomial (quadratic) cost.

Generic; i.e., high-level software implementations of
masked algorithms provide portability and are designed to be
hardware/processor-agnostic. However, these designs do not
necessarily utilize the underlying hardware resources effi-
ciently. Specifically, the memory-level parallelism (MLP)
and instruction-level parallelism (ILP) with vectorized pro-
cessors can be sub-optimal. These effects are amplified as
the state size in masked algorithms increases. This paper
provides an in-depth discussion of the shortfall between
generic C implementations and optimized (inline-) assem-
bly versions which optimally utilize MLP and ILP, although
they require much more expertise. Our main focus is the
performance gap in terms of cycle count, code size and
randomness requirements of different implementations and
flavors of masked designs at all masking orders (d), with dif-
ferent masking multiplications and refresh primitives, over
a large spectrum of ISAs extensions. As an example we
focus an efficient cryptographic sponge permutation target-
ing awide vector bitsliced implementation, theAscon-p [12],
which is used by algorithms such as ISAP [11] and can be
generalized to Keccak as used by SHA3 and other sponges.
We also explore the differences between generic C masking
implementations and optimized (inline-) assembly over con-
ventional single execution path data-path architectures such
as the ARM architecture.

One of the crucial features we explore is trading-off state
storage in the data-memory as compared to keeping it in
the register-file (RF) and algorithmic chunking into inde-
pendent blocks and spacing instructions to maximally utilize
ILP and reduce the impact of read-after-write (RaW) and
write-after-read (WaR). Specifically, when targeting masked
designs, these are hard challenges for experienced design-
ers because they require inline-assembly manipulations and
are not natively supported by compilers. Furthermore, as the
masking order (d) increases as the state gets larger, datamem-
ory accesses (reads and writes) for state handling needs to
be increased since the RF is simply not large enough. This
requires careful optimization which depends to a great extent
on the underlying algorithm. One of the main issues we eval-
uate in detail is how full utilization of SSE extensions is not
always possible; i.e., when d is not a power of two. We pin-
point the optimal d values and draw attention to the very
sub-optimal values of d which aggressively under-utilize the
hardware. One of the comparison points of our generic-C
implementations is the SOTA masked bit-sliced compiled
code developed by the Usuba team [4, 23]. We show that the
proposed generic-C implementation outperforms the Usuba
compiled code in several cases in termsof cycle count but also
(importantly) in code size. Our generic code does not require
any additional auxiliary tools, additional formats, languages,

or effort from the user. We put forward that our work is not
aimed at providing a masked implementation behavioural
security verification tool. However, it is aimed at discussing:
(1) the gap between generic and optimized codes and, (2)
the gap between codes which utilize such tools, and as such
are abstracted, which may result in some performance degra-
dation. We compare such an implementation (generated by
the Usuba compiler) to both, general generic C codes we
have developed and optimized assembly codes over exten-
sive range of different ISAs (ARM and Intel and the possible
extensions).

In terms of the masking gadgets explored here, we report
results while considering several masked-multiplications:
ISW- and UMA-based algorithms (Usuba only supports
ISW-multiplication).We also report resultswhen implement-
ing single-input refreshes which are not ISW-based (as sup-
ported by the Usuba tool). Note that masked-multiplication
input refreshes were not used in the reports from [4, 23]
after verification that refreshes were not needed in this spe-
cific implementation (with Tornado and a SAT-solver tool).
Here, we decided not to assume this type of scenario, since
in the general case refreshes may be required or at least their
need cannot be easily falsified with dedicated tools such as
[2], FullVerif [9, 10], MaskVerif [1]. Therefore, we pro-
vide results with and without a varying level of refreshes
in our designs to better understand their impact on perfor-
mance. In terms of refresh implementations, we first consider
naive ISW-multiplication-based refreshes [20] which set one
input to a logical ‘1’ and then turn to the far more efficient
refresh variants which were explored in [9] for the hardware
implementation case. We provide a generic-C implementa-
tion by trading-off the randomness cost of the ISW-based
refresh with �(d − 1)d/2� [20] and the more randomness
efficient variant from HPC [9]. The randomness-cost of the
UMA-based masked multiplication variant we explore is
�(d − 1)/4� × d in bits [3, 16].

High performance masked software implementations are
attracting growing interest: significant improvements and
advances have been reported in [7, 8, 19, 21, 26]. How-
ever, many of these previous works do not evaluate very
high-order masked design efficiency over ISAs extensions,
are focused on (ARM) NEON architectures, or only provide
specific rather than generic implementations. Furthermore,
most of these reports only provide results for AES or uti-
lize less efficient primitives than the ones evaluated in this
work. Vectorized ARM-based processors utilizing NEON
were also evaluated in [18] targeting masked AES with spe-
cific d valueswith tailored inline-assembly constructs. In this
work we evaluate Intel-based architectures and architectures
without NEON extensions targeting simple (low-end, IoT)
ARM architectures. Nevertheless, our generic-C implemen-
tations, which are evaluated over x86-64 based extensions,
can be utilized to evaluateNEON-supported parallelism, thus
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extending the results from [18]. The building blocks and
methodologies for our inline assembly optimized designs
can be easily extended and evaluated on NEON architectures
with our implementations, gadgets and refresh mechanisms.
In Sect. 3.5 we relate to the structure of the provided open-
source repository for the reader to be able to embed our
primitives in other instances.

Both the generic-C implementations and the proposed
optimized assembly codes reduce the utilization of condi-
tional branches, jumps and function calls considerably. The
goal is to improve performance while preserving a reason-
able trade-offwith increased code size, although these reduce
the generality and ease of reading.

Contributions:

1. The generic-C codes were carefully designed to support
various ISAs and extensions and be easily ported. They
are mainly used as a comparison to illustrate the gap with
more optimized designs, which constitute a contribution
per se.

2. Full-fledged comparisonwith generic-C, through slightly
more optimized-C flavors which are still generic (for all
ds).We then present an optimized assembly and specially
crafted assembly versions for ISA-extensions.

3. The versions of the optimized assembly depend on the
specific ISA-extension used and d. These flavors result
in significant gains as compared to the literature.

4. We show that for some d values and some ISAs, software
masking is actually free in terms of performance; i.e.,
there is a performance loss of O(1) as compared to the
unprotected design.

5. We provide real-life test-cases on concrete, relevant cryp-
tographic instances.

By all these contributions and designs we also support the
open-source community and state-of-the-art knowledge. In
addition we emphasize the goal of promoting future research
with or based on the designs developed.

Paper organization. This paper starts with a short back-
ground introduction to Intel architectures, SIMD extensions,
and optimization trade-offs. It then discusses the bitsliced
permutation used as an example in this paper and themasking
gadgets used in Sect. 1. In Sect. 2 we detail the implemen-
tation aspects of our designs and the comparison designs.
In Sect. 3 we provide a detailed comparison of Intel archi-
tectures, several ARM architectures, optimized assembly
implementations and finally the cost of different refreshes.
In Sect. 4 a short TVLA leakage evaluation is provided and
in Sect. 5 the main conclusions that can be drawn from this
work are discussed.

1 Background

Modern x86 designs are pipelined, superscalar, and are also
capable of out of order and speculative execution (via branch
prediction, register renaming, and memory dependence pre-
diction). This means they can execute multiple (partial or
complete) x86 instructions simultaneously, and not neces-
sarily in the same order as given in the instruction stream
(instruction level parallelism, ILP). The out of order execu-
tion unit includes load/store buffers for committing memory
reads/writes, thus reducing the penalty for memory writes to
almost zero. In all x86 based processors there is a level 1
cache (L1) containing a few thousand bytes (at least), with a
very fast access time of a few clock cycles. The size of the
cipher; e.g., theAscon-p [12] permutation in ISAP is 40 bytes
(40 · d in dth-order masked design), so it can easily fit inside
an L1 cache, even for high-order masking designs. All in all,
x86 architecture offers excellent instruction level parallelism,
and very goodMemory Level Parallelism (MLP), which was
exploited extensively in our implementations (when pos-
sible). However, in architectures that do not fully support
ILP, MLP (e.g. simple or low-end/energy architectures), we
also expect a significant impact in terms of the cipher’s
performance. In our implementations, we aimed to maxi-
mize the amount of independent instructions by splitting the
operations among registers and reordering the independent
operations (to be fair, by design, Ascon-p already has a great
deal of instruction parallelism).

In the following, we briefly recapitulate the basic termi-
nology used for SIMD extensions, the basic trade-offs at
the heart of software optimization of bitsliced algorithms,
and present some of the basic building blocks used in this
research.

1.1 SIMD extensions and trade-offs

In most x86 based processors, at least one of the following
SIMD extensions are present (illustrated in Fig. 1):

• SSE2/SSE3—8/16 (for 32/64 bit modes, respectively)
128-bit registers, accessible via XMM register names

• AVX2—8/16 (for 32/64 bit modes, respectively) 256-bit
registers, accessible viaYMMregister names, in addition
to the 16 registers described in SSE2.

• AVX-512—32 512-bit registers, accessible via ZMM
register name; this extension also adds 16 128, 256 bits
registers to the 16 existing registers described above.

In the following, we relate to some persistent challenges
that are likely to exist for years to come for within-processor
cryptographic computation in general. Modern workloads,
such as big data searches, deep neural networks, graph and
imageprocessing, andhighdata-volumecryptographic appli-
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Fig. 1 Schematic illustration: abstract view and utilization of X -, Y - and Z -MM registers enabling MLP and multiple execution units (EU) with
ILP

cations are memory-bound. The limited memory provided
by low-level caches (of any type) eventually may cause a
bottleneck in the memory. Data movement between the main
memory (and in some cases even from theL1 cache) andCPU
cores impose a significant overhead in terms of both latency
and energy, especially for low-end/no-MLP architectures, as
illustrated in Fig. 2. As the state size within a cryptographic
algorithm increases (due to key size and security level, along
with encoding and/or masking due to fault-injection or side-
channel attacks), communication takes place through narrow
buses with high latency and limited bandwidth. The low data
reuse in cryptographic algorithms cannot amortize the mem-
ory access cost in many cases.

Working with data memory versus different registers with
SIMD extensions

In the following we discuss how to fetch data from the data-
memory with different SIMD technologies in the context of
the size of the available state (d dependent). Figure 3a shows
the results from a benchmark of copying an array, using vari-
ous SIMD technologies, measured in CPU clock cycles, as a
function of the array size. It is clear that the SIMD technolo-
gies (XMM, YMM, ZMM) outperform the native Register
File, but there was little to no improvement among the SIMD
registers. For example, almost no difference between YMM
and ZMM. This can be explained in two ways:

Fig. 2 Schematic illustration: data movement between cache, Register-
File and Memory buffer following execution, over low-end/no-MLP
architectures

1. The memory bus width is 256 bits, so that there is no
additional performance gain when copying 256/512 bits
at a time.

2. (XMM −→ YMM −→ ZMM) the opcode sizes and the
number of cycles per instruction (x86 is pipelined, so
that the effect is reduced) increase and cancel out the
effect of larger reads/writes to the Register File.

Nevertheless, SIMD still provides a 2x–4x performance
gain compared to the native registers: for XMM: ∼2.20x
gain. For YMM: ∼3.46x gain. For ZMM ∼4x gain.
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Another issue relates to the under-utilization of the band-
width to get data from the memory; i.e., whether it efficiently
utilizes the memory-bus with d = 2 for SSE2 or d = 8 for
AVX512. This is directly related to the selection of the mask-
ing order (d) which corresponds to a specific ISA extension
without inline-assembly implementations.

Computation time with SIMD extensions as the state size
increases

This final comment and example relate to storing states in
the IMM/RF when possible, instead of always accessing
the memory. Figure 3b illustrates the results of a bench-
mark that worked exclusively with the RF, the XMM or the
YMM registers. The figure shows how the computation time
increases as the state size increases and depends on the num-
ber of reads/writes needed by the algorithm. As the number
or reads/writes increases (with advances in SIMD technol-
ogy) the computation time becomes dominated by memory
access. This is clearly a function of the overall state size
which, depending on the size of the registers, can or cannot
be handled in registers enforcing memory-accesses. This is
another factor we carefully optimized in our inline-assembly
versions.

The level of Instruction Level Parallelism in Intel’s archi-
tecture (i.e. the super-scalar/multi issue) is also an important
factor. That is, even if we can enjoy processing paral-
lelism equivalent to the memory access parallelism, it is not
always possible given the dependencies between subsequent
instructions, where the improvement can be cancelled out by
scheduling, register-renaming, stalls, etc. Therefore, in the
following sections, we also compare a “limited parallelism”
architecture; e.g., non-NEON ARM low-cost /low-energy
architectures.

In our implementations, we made no attempt to minimize
the memory reads/writes as a criterion, but only where an
impact was observed. This was done for several reasons: (1)
The state is still rather small and fits easily into the L1 cache,
(2) Memory Level Parallelism and register renaming essen-
tially eliminate the penalty of a memory write, (3) Owing
to rearrangements of instructions in our implementations
the distance between writing-after-read of a certain mem-
ory address could be at least a dozen instructions, enabling
the processor to execute almost non-stop.

1.2 Highly parallel-able bitsliced ciphers

The candidate we chose to illustrate results with in this paper
is the Ascon-p [12]. It is the core permutation of Ascon, as
proposed in the CAESAR lightweight competition. In fact,
it is also the main building block of ISAP, an AEAD scheme
which is one of finalist in the NIST lightweight cryptogra-
phy standardization competition. However, the main reason

this primitive was chosen is that it is a nice overall represen-
tative of a large class of sponge-based constructions (such
as Keccak as used in SHA3). ISAP is more oriented towards
providing protection against a fairly large class of implemen-
tation attacks (e.g. SCA and FIA) and is entirely based on the
concept of mode-level security; by now it is quite substanti-
ated that masking is still required in e.g., ISAP or ASCON.
Generally, for almost all single/double pass Sponges, mainly
in initialization/re-keying/finalization parts of the algorithm,
SCA security is still needed.

Therefore, Ascon-p can be used to realize a wide range
of cryptographic computations such as pseudorandom num-
ber generation, authentication, encryption, authenticated-
encryption and hashing. All of these can be appended with
implementation security requirements or not. These proper-
ties make it a very efficient lightweight candidate.

Note, however, that in this paper we are interested in
the typical client/server asymmetry: although one party to
the communication might be forced to run on an embedded
device, the other might be very strong computationally. In
other words, we were interested in implementations that are
efficient on both low-end and high-end devices. Furthermore,
we also aimed at providing efficient implementations over
various architectures (supporting advanced ISAs extensions
or not), and various security levels; i.e., with any security
order (d) in the context of masking efficiency.

Ascon operates on a 320-bits state that is organized into
5×64 bit lanes, and is updated by the permutationAscon-p. It
consists of 3 steps that are applied consecutively on the state
in each round: a constant round addition, a substitution layer,
and a linear layer. The Ascon substitution-box (Sbox) is in
fact very similar to the Keccak Sbox with the exception of
several linear operations; namely, six XORs and one Invert,
which in the context of masking are low cost, especially as
d increases.

The Ascon-p permutation is organized in a sponge con-
struction, which expresses it in terms of rate r and capacity
c where 320 = r + c. The rate in the sponge construction
corresponds to the block size, whereas the capacity affects
the security level. In this work we implemented the Ascon-
p based instances used by Isap-A-128a. Ascon-p is built by
default to support bitsliced, high parallelism implementa-
tions where the 64 5-bit Sboxes can be sliced and efficiently
arranged as bit-operations between 64-bit words.

1.3 Masking gadgets

1.3.1 SOTA single input refreshes

• Naive Standard ISW input refreshes can be implemented
with Algorithm 1 which asserts one of the masked multi-
plication inputs to be refreshed and the other input as ‘1’
(illustrated in Fig. 4a).
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Fig. 3 aWorking with data memory versus different registers with SIMD extensions b Computation time with SIMD extensions as the state size/d
increases

Algorithm 1 ISW AND.
Input: shares ai and bi , s.t. �i ai = a and �i bi = b.
Output: shares ci , s.t. �i ci = a ⊗ b.
for i = 0 to d − 1 do

ci ←− ai ⊗ bi ;
end for
for i = 0 to d − 1 do

for j = i + 1 to d − 1 do

s
$←− F2n ;

s′ ←− (s ⊕ (ai ⊗ b j )) ⊕ (a j ⊗ bi );
ci ←− ci ⊕ s;
c j ←− c j ⊕ s′;

end for
end for
return c1, ..., cd ;

• HPC Amore efficient flavor in terms of randomness and
latency was proposed in [9] for all d’s by utilizing the
concepts of on-path and off-path randomness handling.
Though it is more efficient for hardware scenarios, it
is also efficient for software implementations, as imple-
mented here, and illustrated in Fig. 4b.

1.3.2 SOTAmultiplication gadgets

Belowwe discuss generic multiplications, i.e., ones that their
code implementation is quite d-independent, as well as the
internal refresh mechanisms are rather easily coded with an
high-level description.

• ISW The baseline and generic multiplication gadget
which is utilized here is the well-known ISW AND gad-

get (Algorithm 1). Its implementation is simple, is less
platform/ISA-dependent and requires a small code size;
however, it is quite randomness-hungry, as discussed
above.

• UMA The Unified Masking Approach, UMA, algorithm
we embedded is more randomness-efficient. However, it
is a more complex algorithm that require more opera-
tions (more energy hungry) and given in Algorithm 2. It
is based on a series of optimizations starting from the par-
allel masking multiplication algorithm first proposed by
Barthe et al. [3], later optimized by Belaïd to reduce the
randomness cost for specific ds and finally illustrated in
a rather condensed form in [16]. Although there are some
randomness utilization optimizations for specific ds (e.g.,
for d={4,7} in [18]), our goal with the generic-C imple-
mentation was to implement a generic (d independent)
code.

InAlgorithm2 a boldface lowercase letter denotes a vector
of shares (i.e. a = (a0, . . . , ad−1)). A subscript pre-pended
with a > symbol denotes a circular rotation of a vector and
a superscript denotes an index to a subsection of a vector. In
other words, in the case of r , r i>1 denotes the ith subsection
of size d, circularly shifted by 1 position. Operations are per-
formed within each assignment from left to right to prevent
recombinations.

2 Implementations

Various implementations were designed and tested, and fell
into 3 main groups:
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Fig. 4 Schematic illustration: a
refresh by ISW-multiplication
gadget b refresh by HPC c
refresh by HPC and
multiplication by UMA

Algorithm 2 UMA-based generic SW masked multiplica-
tion.
Input: shares ai and bi , s.t. �i ai = a and �i bi = b, and a uniformly
drawn at random vector r chunked to � d−1

4 � vectors of d bits each.
Output: shares xi , s.t. �i xi = a ⊗ b.
x ←− a ⊗ b;
for i = 0 < �d/4� do

x ←− x ⊕ (((((a ⊗ b>2i+1) ⊕ r i ) ⊕ (a>2i+1 ⊗ b) ⊕ r i>1) ⊕ (a ⊗
b>2i+2)) ⊕ (a>2i+2 ⊗ b));

end for
l ←− �d/4�;
if d = 3 mod 4 then

x ←− x ⊕ ((((rl ⊕ (a ⊗ b>2i+1)) ⊕ (a>2i+1 ⊗ b)) ⊕ rl>1) ⊕ (a ⊗
b>2i+2));

else if d = 2 mod 4 then
if d = 2 then

z ←− {rl0, rl1, rl0 ⊕ rl1};
x ←− x ⊕ ((z ⊕ (a ⊗ b>2l+1)) ⊕ (a>2l+2 ⊗ b));

else
x ←− x ⊕ (((rl ⊕ (a ⊗ b>2l+1)) ⊕ rl>2l+2) ⊕ (a ⊗ b>2l+2));

end if
else if d = 1 mod 4 then

z ←− {rl , rl };
x ←− x ⊕ (z ⊕ (a ⊗ b>2l+1));

end if
return x;

• Optimized assembly implementations These implemen-
tations were written with inline assembly, using var-
ious SIMD instructions (see Sect. 1.1), for specific
masking orders; e.g., SSE2 for 2nd order masking,
AVX2 for 4th order masking, AVX-512 for 8th order
masking.

• Generic C implementationsThese are generic implemen-
tations for every masking order, written in C. An optional
optimization for 32 bits was added, to support 64 bit data
operations (using SSE2).

• 3rd party/open Source implementations These imple-
mentations were developed/compiled by 3rd party, and
were included in our comparisons to evaluate our imple-
mentations; specifically, the Usuba compiled generic C
implementation for any masking order [4, 23], and the
non-masked C implementation provided by the creators
of the cipher [12].

A fair comparison

Efficient randomness throughput handling was carried out
by an efficient randomness buffer to obtain the true per-
formance of each implementation, we had to eliminate the
biggest bottleneck in our system; namely, randomness band-
width (e.g., it takes time to generate random bytes and read
them from a file). Therefore, we implemented a class which
manages a ring buffer that fills up with random bytes (taken
in our case from /dev/urandom) whenever needed as illus-
trated in Fig. 5. The one exception was Usuba, which does
not come with a built-in solution for dealing with the ran-
domness bandwidth (there is only a place holder that uses
srand(time(NULL)); rand() to get 8 random bytes, which is
far from an efficient placeholder). Thus, we integrated our
system into the Usuba compiled code for a fair comparison.
This was the only changewemade to their code, to ensure the
best possible performance from Usuba and guarantee com-
parisons on equal grounds.

Inline optimizations

We next list the main inline optimizations done by our
methodological optimization flow which are algorithmic
dependent. That is, they require code/algorithmic under-
standing, and partitioning toRaWandRaW/WB independent
blocks (these procedural steps are recalled below when we
discuss the optimization flow-chart):

1. Minimizing Read After Write dependencies which is
done with re-ordering instructions and maximizing reg-
ister usage.

2. Minimizing memory access, by loading the entire state
to the register file for as long as possible.

3. Inlining functions by using mostly macros (guaranteed
to inline the code) or by using the “inline” keyword
(depends on compiler’s optimization policy). On the
other hand, inlining comes at the cost of increased code
size, so as higher masking orders are used/functions get
longer, a function’s definition is altered from a macro to
an inline functions. (examples: optimized assembly for
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Fig. 5 Random buffer
implementation

masking order 4 versus masking order 8, generic C for
any masking order).

Figure 6 of our code illustrates a major design pattern
found in our assembly implementations relating to points 1
and 2 above. The chart to the right of the figure shows the
usage of the state with the registers (YMM0 to YMM4).
It reveals a considerable gap of at least 4 cycles between
writing to the registers and reading/writing afterwards. Note
that modern compilers can optimize code with the methods
mentioned above, but with our experience, GCC does not
handle inline assembly optimizations well (the code gener-
ated a SEG fault, so we have added the ‘volatile’ keyword).

In Fig. 7 we depict the usage of the entire Register File,
while inline-ing each sub-function in Ascon-p (in this case,
the linear diffusion layer, LDL). For example, the three
highlighted routines here are a section of the full LDL,
in this case it corresponds to a fourth-order masking and
AVX-2 (i.e., were implemented per extension flavour and d
pairs). As stated above, we minimized the Read after Write
dependencies in our code as much as possible by reordering
instructions and using as much as possible registers, as can
be seen from each code section. Note that we have maxi-
mized the register usage and removed the ‘volatile’ keyword
so GCC could reorder the instructions.

In Fig. 8 we illustrate optimizations relating to the third
optimizationmethod regarding inlining functions bymacros:
Code-size versus Cycle-count optimization by functions ver-
sus macros (or inlined functions)—The benefit of using a
macro is the elimination of branching/stack operations over-
head, the downside is the codesize increases for each usage
of the macro. The benefit of using functions is reduction of
overall code-size if the function is called frequently. Specif-
ically in our library, as permutation rounds’ code is huge,
using each round as a macro will not be efficient in terms
of code size (10 rounds inlined) and will only cost little in
cycle count overhead due to branching/stack handling. How-
ever, at the gadgets level, as the macros code is small and
only repeats a small number of times (usually a dozen times
or less) in a bit-slice vectorial representation in a round, it
is efficient to use macros and save cycles even if it slightly
increase code-size.

Additional optimizations which we have performed are
listed below.Admittedly, these aremore trivial/standard steps
for assembly optimizations. However, they constitute a huge

engineering effort and are indeed important to enumerate.
The following list contains key ingredients to improved code-
size efficiency and some performance (cycle-count) is lost if
not properly embedded:

1. Constant reusing by defining file-wide static variables
(memory constants) and using them throughout the pro-
gram’s lifetime (a keen eyed reader would observe the
header consts.h used in every file. It both reduces code
size and data section size.

2. Loop unrolling—donemanually for all optimized assem-
bly implementations, but sometimes also for C code (e.g.,
paralleling independent operations).

3. Vectorizing loops (done by the compiler by enabling opti-
mizations).

These optimizations are merely examples and are exten-
sively used by different SIMD flavors in our codes and
different parts of the algorithm. All are available in our fully
public GitHub1 repository: this repository is constructed
especially for embedding the developed optimized gadgets
in all ISAs and in additional algorithms, optimizing masked
designs. It is packed with supporting examples and supple-
mentary content for evaluation, testing, profiling, etc., as
discussed in Sect. 3.5, for easily porting.

Optimization process and comparative example

In this subsection we give a high-level overview of utiliz-
ing the macros developed through an example of an LDL
implementation. Figure 9 illustrates in a comparative view
of different implementations for one LDL macro listing: (a)
pseudocode, (b) SSE2/3, (c) AVX2, (d) AVX512, and (e) C-
code. As the C-code indicates, the LDL macro performs two
rotations on the input and sums them all up with the original
value (using xor). As can be seen from the comparison, the
advanced architectures implements more sophisticated and
extensive instructions that allow smaller codesize and faster
(overall) runtime. A keen eyed observer may notice that only
AVX-512 supports rotate-right (ROR) as an instruction, this
is no mistake and it emphasizes the fact that advanced ISAs
can improve computation time/codesize in more than one
way (i.e., bigger vectors for faster processing).

1 https://github.com/dorsal1464/ascon-p.
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Fig. 6 Minimizing RaW and memory-access

Fig. 7 Usage of the entire
register file in the linear layer
and minimal block dependency

The optimization flow-chart, indicating the methodolog-
ical framework developed, and is provided in Fig. 10. It
illustrates the cryptographic engineering optimization pro-
cess which was taken in this research: first a primitive
(algorithmic gadget) is chosen and implemented on all spe-
cific ISAs’ and extensions and for all d values. Then the
process receives as inputs the supporting hardware selec-
tion (i.e., ISA and extension), and the high level description
cryptographic algorithm. Then specific gadgets are chosen

per d and ISA/extension following an instruction reorder-
ing of the algorithm (minimizing RaW, WB, loop unrolling
and functions, function inlining)which enables identification
of independent code-blocks length. Then, this intermediate
output is given a few optimization rounds to provide the best
gadgets for embedding, and the final assembly is exported.
These optimizations are described in Sect. 2.
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Fig. 8 Code-size versus Cycles-count optimization - Functions versus Macros (or inlined functions). A disassembled piece of code is provided

Fig. 9 Example of Ascon-p’s Linear Diffusion Layer implementation for different implementations —a Pseudocode b SSE2/3 c AVX2 d AVX512
e c-code

Fig. 10 Optimization Flow-chart-Masked Assembly optimization process
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3 Evaluation

In all the evaluation benchmarks discussed below we imple-
mented 105/d repeated Ascon-p blocks with random inputs;
i.e., 105/d calls for each d, design flavor, architecture flavor
and optimization mode. This is because as d increases, the
input size increases and cannot be stored in memory as is (a
typical limit is around 500MB). On the one hand, to obtain
solid statistics and robust measurements for metrics such as
cycles/bit and randomness usage we need a significant sam-
ple space, but on the other, it is impossible to do so when
using large d values to generate random inputs or getting
them directly from the randomness source, since this would
detract from the validity of our measurements. Therefore,
in our experiments we limited the number of experiments
by normalizing them to the maximum number of inputs that
could fit in the cache/buffer (which was easily achieved by
dividing by d). In all the experiments, and most importantly
for large d values, the number of tests were always far more
than enough to achieve convergence on our evaluated param-
eters.

3.1 Generic Implementation Efficiency versus d for
x86 and x86-64 Intel architectures

Figure 11 depicts various performance results for the pro-
posed generic C implementations on the Ascon-p permu-
tation block, tested on both the x86, and x86-64 Intel
architectures. For each architecture we illustrate the cycles
per bit, randomness usage (in units of bytes), and code
size of each implementation (as loaded into memory). Note
that all the randomness usage figures in this work were
divided/normalized by a factor of d, which enable easy
visualization of trends and differences between curves. “Pro-
posed (generic C)” refers to our efficient implementation
(with and without UMA AND gates), “Usuba compiled”
refers to the C code generated for Ascon-p by the Usuba
compiler. In all the implementations, optimization flags were
set (gcc -O3) to provide the best possible results, includ-
ing vectorization of the code. The proposed implementation
achieved somewhat better performance in x86-64 (in the
range of 5–10%), and slightly worse in x86 compared to
the Usuba compiled code, with a maximum 7% degradation.
Even though our proposed code was not considerably faster,
it used considerably less code than the Usuba code size in
x86-64; namely, up to a 50% code-size reduction (in our
experience, the Usuba compiled code looked bloated with
redundant variables and state copies). As discussed in the
introduction, one of the goals of generic C codes is to pro-
mote transparency, reduce the need for additional auxiliary
tools, formats, languages, or effort from the user except for
the official and public ISA. Therefore, exceeding the results
from the highly professional Usuba tool and remaining on a

par with it in other scenarios constitute a very nice additional
added value. In terms of x86, as shown on the right side of
Fig. 11, we were not able to detect a clear trend from the
code size graph since neither code size exhibited a consistent
trend (recall that Ascon-p is optimized for 64-bit registers).
As stated above, the findings must be taken with a grain of
salt, since an increased code size could implymore vectoriza-
tion / loop unrolling, which is not a bad thing in cycle counts.
However, while trying to find a good balance while maintain-
ing superb cycle counts we observed that the product metric
of cycle count and code size was much more efficient in x86-
64 for the proposed generic C. Note as well that despite the
generality of the code and its independence in terms of aux-
iliary tools, it was mainly aimed at pinpointing the gap with
highly inline assembly optimized codes, as discussed below
in details.

The blue curves in Fig. 11 which correspond to the pro-
posed code with UMA AND gates reveals that:

1. The cycles per bit had a “zigzag” pattern, for several
reasons. The UMA AND gate is much more complex /
long compared to its ISW counterpart; thus, it has more
branches and fewer loops, making it harder for the com-
piler to optimize and vectorize the code for the masking
orders in the best way possible.

2. The randomness usage plot has a step-like shape that
increases every four masking orders, but always uses
fewer random bytes than the other implementations,
which is its main added value and motivation. This stems
from the design of the UMA AND gates.

3. The code size of the proposed code (with UMA) is con-
siderably larger than other implementations. As stated
above, this is due to the fact that the UMA AND gate is
much more complex.

Interestingly, an examination of the code of the UMA
AND gate showed that for certain masking orders, the cycles
per bit was (slightly) better (as observed in the figure),
whereas for others, the cycles per bit were much higher. This
is related to the branches, since formasking orders that do not
divide by 4, we eventually end upwith amuch larger function
that corresponds to the existence of complete, incomplete and
pseudo-complete branches [16]).

3.2 Generic implementation efficiency versus d for
32 and 64 bit ARM architectures

Figure 12 illustrates the performance metrics of the generic
C implementations on the Ascon-p permutation block, emu-
lated on the ARMv7 (32-bit), and aarch64 (64-bit) ARM
architectures. For each architecture we calculated the cycles
per bit, randomness usage, and code size of each implementa-
tion (as loaded into memory). The proposed implementation
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Fig. 11 Generic
Implementation Efficiency
versus d for x86 and x86-64
Intel architectures

Fig. 12 Generic
Implementation Efficiency
versus d for 32 and 64 bit ARM
architectures

achieved somewhat better performance for some masking
orders, and up to 17% worse for others in aarch64. On the
other hand in ARMv7, the performance was identical com-
pared to the Usuba compiled code. Again, cycles per bit was
emulated and should not be taken as a complete case. Regard-
ing code size,the proposed code was significantly smaller in
aarch64, and since QEMU’s ARM emulation has no special
SIMD, there could be direct correlation between increased
code size and better performance (because increased code
size could imply more loop unrolling). In ARMv7, both
graphs followed the basic trend. In terms of the proposed
code with UMA AND gate, similar trends as observed for
the x86/64 architectures emerged.

3.3 Tailored Implementation Efficiency versus d and
extension type, and the gap from
generic-designs

As discussed above, the x86 architecture has three major
SIMD extensions: SSE2/3/4 is accessible via XMM regis-
ter names, AVX2 is accessible via YMM register names,
and AVX-512 is accessible via ZMM register names (this
extension is only available in the 64-bit mode). Given the
constraints mentioned above,in our x86 (32-bit) benchmark,
there was no optimized assembly for masking order 8 (usage
of AVX-512 is not supported), and the code was slower and
longer due to smaller register files.
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Fig. 13 Tailored Implementation Efficiency versus d and extension type and the differences with generic designs

The performance metric results of the generic C imple-
mentations and our optimized assembly on the Ascon-p
permutation block are illustrated in Fig. 13, which was tested
on both the x86, and the x86-64 Intel architectures. As dis-
cussed above, for each architecture we calculated the cycles
per bit and the code size. The optimized assembly legend
entry refers to the assembly implementations we wrote for
masking orders 2, 4, 8 for x86-64. For x86 there is no opti-
mized assembly for masking order 8 as mentioned above.
The baseline (no masking) implementation results from the
official inventors of Ascon-p also appear on the plots for
comparison, as indicated by the gray diamond mark in the
d = 1 entry. In all implementations, optimization flags were
set (gcc -O3) to provide the best possible results includ-
ing vectorization of the code, although for our optimized
assembly, it had little effect. Even though we optimized the
proposed generic C to the limit, it still struggled to keep
up with our optimized assembly. The shortfall in this case
reached 50% in cycles per bit which is very high. Note that
in all our assembly implementations, we also included input
refreshes (unlike the proposed generic C and Usuba), so real
raw performance would be slightly better. Furthermore, in
our proposed generic C code, in 64 bits we were faster than
in 32 bits for all ds, as we would expect, but in Usuba the
situation was sometimes the other way around. This may
hint that the Usuba compiler does not generate code aiming
for good optimizations for 64 bit architectures. In terms of
code size, our assembly code was 100% unrolled, whereas

the proposed C code was not (mainly AND gates unrolling),
but in almost all cases our assembly implementation was still
better, providing even joint and considerable added value for
cycles/bit and code-size.

The final and important highlight from the figure is that
full utilization of SSE extensions is not always possible. For
instance, when d values are not a power of two, the effort
will strain the memory access and under-utilize the memory
interface hardware by creating vacant information traffic.The
need to work with (e.g.) ZMM with d values in the range
5–7 will reduce the cycles per bit since these accesses are
slower (Figs. 1 and 2) thus pinpointing the distinct optimal d
values and very sub-optimal progressively improving values
of d which aggressively under-utilize the hardware (these
are illustrated with ellipses in the figure). All in all, ideally
we would have hoped that the SIMD progressive extensions
would give usmasking for “free” (at least in terms of through-
put). In practice, we were not far from this in terms of cycles
per bit since with d = 2 and 4 we were very close to the
unmasked official design. However, with d = 8 we began
to observe an impact. As hinted in Sect. 1.1 this is due to
the limited memory-bus width and the payload of the ZMM
registers opcodes. However, the results still indicate very sig-
nificant gains as compared to the generic C implementations,
thus justifying the use of such techniques for similar crypto-
graphic primitives.
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Fig. 14 Performance of generic
C implementations with various
refresh levels/implementations

3.4 The cost of refreshes

Finally, in Fig. 14 we illustrate the performance of generic C
implementationswith various refresh levels/implementations
on the Ascon-p permutation block AND gates single-input,
as tested on the x86-64 architecture. In each architecture we
calculated the cycles per bit and randomness usage.

Clearly, adding 20% refreshes (one out of five ANDs in
an Sbox) with either method yielded very good performance,
almost on a par with the original proposed generic C. How-
ever, at full (100%) input refreshes there was a considerable
difference in performance in both refresh methods compared
to no refreshes, as expected. For larger masking orders, the
ISW became much more expensive in terms of performance.
With respect to randomness usage, HPC used considerably
fewer random bytes, which justifies its utilization in cases
where refreshes are needed or their need is hard to falsify.

3.5 Designed for generalization and embedding

Our tailored repository was optimized for constructive reuse,
generalization, embedding in new projects and envisioned by
open-source spirit. Gadgets/Macros’ repository structure and
design examples illustrate this property. It is generic in the
sense that they are rather easily applicable to all bit-sliced
designs. New or other bit-sliced designs (SPN-based and
others) can be easily ported. The flow for embedding new
algorithms is shortly discussed.

As illustrated in Fig. 15, which visualizes part of the
structure of our MaskSIMD-lib, it is partitioned to ciphers
examples, gadgets libraries state handling and auxiliary tools,
in addition, more branches exist for test benching evaluating
efficiencymetrics, randomness handling, etc. For a new algo-

rithm to be implemented by the methodological framework
developed, first a selection of primitives is done by branch-
ing from levels 2–4 as highlighted in the figure, these are set
owing predefined architectural parameters of the platform.
Then the designer turns to perform optimizations steps as
listed in Optimization Flow-chart (Fig. 10) and partition-
ing to independent algorithmic code blocks (recall Fig. 10).
Next a designer may utilize the test-benches and profiling
tools developed specifically for the evaluation ofMasked per-
mutations: located in “scripts/”, state handling in memory
examples are located in “src/gadgets/state”, efficient ran-
domness buffer is located in “src/random” and utilization
examples are provided in the test-benches. Finally, evalua-
tion can be performed.

4 Initial security evaluation

In order to provide an initial proof of concept security
evaluation we have programmed several Ascon-p permuta-
tion flavours from our library on a 32bit STM32 NUCLEO
embedded-system board. We have performed a Fixed versus
Random (F vs. R) t-test-based Test Vector Leakage Assess-
ment (TVLA) evaluation after measuring the core current
flowing through a Tektonix-CT2 current-probe using a Series
5 12-bit Picoscope Oscilloscope. As our library contains
quite a large set of primitives (different ANDs, refreshes)
designed for various platforms (SSE2/3, SSE4.1, AVX-2,
AVX-512) and underlying hardware devices, we only show
initial results from Masked Ascon-p with orders 2 and 3.

First, we were interested to provide some sanity checks
over our codes and evaluate signal quality. For that purpose
we have assigned Bad-Input-Sharing of the plaintext in byte
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Fig. 15 Gadgets/Macros’ repository structure and design examples, and flow for embedding on new algorithms.A user may choose a specific gadget
macro (2) from a specific genre (1), then choose the architecture (3 & 4)

number 5 and 15. In our settingwe have chosen 2 upper 64-bit
words of the permutation input to act as plaintext, whereas
the constant (shared) key is assigned to the next 2 64-bit
words, the last 64-bit word which is typically reserved as a
Nonce was assigned to a (shared) constant. As can be shown
in Fig. 16a. The shared inputs are serially transmitted to the
device from a PC. The evaluation test over the measurement
in this case shows the time segment where the values are
being copied to appropriate registers before the permutations.
As expected a significant leakage exist already in the 1st
statistical moment leakage with as little as 50 × 106 traces
and it is causal, i.e., Byte 5 being fetchedfirst and leaks before
Byte 15. As memory operations are involved the magnitude
of the leakage is quite huge with such a small amount of
traces already.

Following this sanity check we have corrected input shar-
ing being sent from the PC and then moved on with another
test being utilizing bad randomness assigned to several inter-
nal permutation masked ANDs (their internal refreshes) by
using a modified flawed Randomness Buffer. In this example
we focus on the time-samples of an initial Ascon permutation
round. The results from this test appear in Fig. 16b. Several
observations are that first leakage magnitudes are generally
far smaller owing to CPU internal manipulations which leak
and as expected bad randomness for themanipulation of Byte
5 appear before that of Byte 15. And though we expect leak-
age to appear also in the 2nd statistical moment, the small
number of traces used as an example here, i.e., 20×103, does
not (yet) leak in this statistic.

The results of our first investigation without bugs ver-
sus time sample is shown in Fig. 17a and the maximum
leakage in time over the number of traces used is shown in

Fig. 17b. Clearly, no leakage is apparent in the first statistical
moment as expected, only in the second one, popping out
with 0.5 × 106 traces and significant confidence is already
achieved with 1×106 traces. A third-order masked Ascon-p
was also evaluated, as shown in Fig. 18, this plot is produced
considering 10 × 106 traces and shows leakage only in the
third statistical order.

5 Discussion and conclusion

High performance masked software implementations are
attracting significant interest. In this work we evaluated
the efficiency of high order masked designs over different
ISAs extensions, specifically targeting Intel x86/-64 architec-
tures and SSE3/AVX-2/AVX-512 extensions. We evaluated
non-NEON ARM architectures and provided ultra-specific
assembly optimized implementations (different d to opti-
mally match the level of extension) and fully ported and
flexible generic C implementations for all d values with
several levels of optimizations and parametric natures for
gadget selection. Whereas most previous studies on software
masking have focused on the AES algorithm, NEON archi-
tectures or provide some specific d values results, in this
work we provide a complementary view with the Ascon-
p sponge permutation and a variety of architectures ranging
from low-cost to ultra-high-performance, and for all d values.
We concretely embed state of the art masking gadgets in this
evaluation to better understand the differences between uti-
lizing specific multiplication algorithm or a specific refresh
gadget. To the best of our knowledge, this constitutes the first
published results on some of these combinations.
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Fig. 16 TVLA F versus R t-test on second-order masked Ascon and a Bad-Input-Sharing, b Bad-Internal-Randomness. In each, left is the 1st—and
right is the 2nd—order

Fig. 17 TVLA F versus R t-test over a masked Ascon with two shares (a) versus time-samples (b) versus the number of traces

Fig. 18 TVLA F versus R t-test
over a masked Ascon with three
shares versus time-samples
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Both the generic-C implementations and the proposed
optimized assembly codes considerably reduced the uti-
lization of conditional branches, jumps and utilization of
function calls in an attempt to improve performance while
preserving a reasonable balance with increased code size.
Although some of these features reduce generality and ease
of reading and are tedious, the shortfall we observed with our
evaluation metrics was notable. The major design patterns
found in our optimized assembly implementations for each
SIMD extension flavor are as follows: (1) Minimization of
read after write and write after read dependencies, achieved
by instruction re-ordering and with maximum register usage
(2) Minimizing memory access, by loading the entire state
to the register file for as long as possible and, (3) Usage of
the entire register file, while inline-ing each sub-function.

The generic-C codes were carefully designed to support
various ISAs and extensions and to be easily ported. They
were mainly used as a comparison to identify differences
from more optimized designs, but constitute a contribution
in their own right.As compared to theUsuba compiler results,
the proposed generic C implementation achieved better per-
formance in cycles/bit for the x86-64 architecture (in the
range of 5–10%), and on both x86-64/x86 the code size of
our generic C was up to 50% smaller (in fact, we can trade
off and achieve fewer cycles/bit for slightly more code area).
One of the highlights of this work is that the generic C codes
promote design transparency, reduce the need for additional
auxiliary tools, additional formats, languages, and effort from
the user. Therefore, outperforming the results of the highly
professional Usuba compiler and remaining on a par with it
in other scenarios is a very nice additional added value.

The optimized inline assembly versions demonstrate a gap
of up to 50% in cycles per bit, which is considerable, between
the most optimized generic C design (and Usuba), and also
concurrently provide far more code size efficiency. We dis-
cuss the fact that full utilization of SSE extensions is not
always possible; for instance when d values are not a power
of two (with a 64 bit word size inAscon), which places exces-
sive strain on memory access that under-utilizes the memory
bandwidth. This underscores the distinct optimal d values
and very sub-optimal progressively improving values of d.
Finally, we reported on the relative gap of several refresh gad-
gets and discussed its wide range in terms of cycle counts and
randomness usage.

Finally, we believe that providing real-life test cases
with concrete and relevant cryptographic instances such
as sponges contribute to the open-source community and
the sharing of knowledge and expertise. Several interesting
aspects to explore in the future relates to transitional leakages
in combinational elements (e.g.,) shifters [17] and transition
leakages [6] in the case a compiler is given freedom to per-
form instruction reordering and weather it can escalate to a
security flaw (one of our no compiler-optimizations motiva-

tions). And finally to explore externally amplified coupling
[14, 22] on the developed library.
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